

TagUI

[image: _images/tagui-logo.png]
A free, open-source, cross-platform RPA tool that helps you automate your desktop, web, mouse and keyboard actions easily. Here’s what a simple TagUI flow looks like:

// below is an example to login to Xero accounting website
https://login.xero.com/identity/user/login

type email as user@gmail.com
type password as 12345678
click Log in

// besides web identifiers, images of UI elements can be used

type email_box.png as user@gmail.com
type password_box.png as 12345678
click login_button.png

// (x,y) coordinates of user-interface elements can also be used

type (720,400) as user@gmail.com
type (720,440) as 12345678
click (720,500)

Download TagUI v6.110 here.

Installation

Windows

	Read the above, or download zip file TagUI v6.110 for Windows [https://github.com/kelaberetiv/TagUI/releases/download/v6.110.0/TagUI_Windows.zip]

	Unzip the contents to C:\

	Install OpenJDK for Windows [https://corretto.aws/downloads/latest/amazon-corretto-8-x64-windows-jdk.msi]

	Install Chrome web browser [https://www.google.com/chrome/]

	Add c:\tagui\src to start of path [https://www.c-sharpcorner.com/article/add-a-directory-to-path-environment-variable-in-windows-10/]

	Open Command Prompt

	Copy, paste and run this command:

tagui c:\tagui\flows\samples\1_google.tag

	Finally, run this command to pull the latest features and bug fixes [https://github.com/kelaberetiv/TagUI/issues?q=is%3Aissue+is%3Aopen+in%3Atitle+fixed+OR+done+]

tagui update

	Having problems? Click here. You have run your first TagUI flow! 🎉

To install TagUI Microsoft Word Plug-in (a full-featured app to make RPA very easy), download the MS Word Plug-in installer [https://storage.googleapis.com/tagui-dependencies/TagUI%20WordAddIn/TagUIWordAddInSetupV3.18.zip], unzip the file and double-click Setup.exe. See this video by RPA Learners [https://www.youtube.com/watch?v=mtiuzU6e4XE] on installing and running your first MS Word RPA bot. Download MS Excel Plug-in installer [https://github.com/kelaberetiv/TagUI/releases/download/v6.64.0/TagUIExcelAddInSetupv3.06.zip] to define RPA data parameters in Excel and run TagUI from Excel. See this video by RPA Learners [https://www.youtube.com/watch?v=YsA9hpveROs] on installing and creating visualisations with the Excel plug-in.

macOS / Linux

	Download TagUI v6.110 for macOS [https://github.com/kelaberetiv/TagUI/releases/download/v6.110.0/TagUI_macOS.zip] or Linux [https://github.com/kelaberetiv/TagUI/releases/download/v6.110.0/TagUI_Linux.zip]

	Unzip the contents to your desktop on macOS, or /home/your_userid on Linux

	Install OpenJDK for macOS [https://corretto.aws/downloads/latest/amazon-corretto-8-x64-macos-jdk.pkg] or Linux [https://corretto.aws/downloads/latest/amazon-corretto-8-x64-linux-jdk.tar.gz]

	Install Chrome web browser [https://www.google.com/chrome/]

	Open Terminal

	Copy, paste and run these commands, replacing your_tagui_path accordingly:

sudo ln -sf /your_tagui_path/tagui/src/tagui /usr/local/bin/tagui

tagui /your_tagui_path/tagui/flows/samples/1_google.tag

	Finally, run this command to pull the latest features and bug fixes [https://github.com/kelaberetiv/TagUI/issues?q=is%3Aissue+is%3Aopen+in%3Atitle+fixed+OR+done+]

tagui update

	Having problems? Click here. You have run your first TagUI flow! 🎉

Main concepts

Flows

TagUI automates your actions by running flows, which are text files with .tag file extension.

You can run a flow in the Command Prompt/Terminal like this:

tagui my_flow.tag

 Advanced concepts

Advanced concepts

Saving run results of flow

You can save an html log of the run and the flow run results to tagui/src/tagui_report.csv with the -report option (shortcut -r).

tagui my_flow.tag -report

The CSV file will show one line for each run, when it started, how long it took to complete, any error message during run, the link to the log file for that run, and the user’s workgroup\userid.

Handling exceptions and errors

There are 3 ways to handle exceptions in TagUI when things do not go as planned.

The first way is local error handling. This means using if conditions to check specifically for certain scenarios and handling the scenarios accordingly. For example, check if some UI element is missing, then do xyz steps. Using this way, a workflow can have multiple fine-grain exception handling.

The second way is workflow error handling. A workflow can be chained as follows to handle error or success accordingly. The workflow error.tag will run only if flow.tag errors out. The workflow success.tag will run only if flow.tag runs successfully. TagUI will automatically throw error when it detects an expected UI element missing (and autosave screenshot) or some other unknown errors.

Windows example from the command prompt:

call tagui flow.tag || tagui error.tag
call tagui flow.tag && tagui success.tag

macOS / Linux example from the terminal:

tagui flow.tag || tagui error.tag
tagui flow.tag && tagui success.tag

The third way is global error handling. Configuration can be done for TagUI such that after every run, special handling is done to send data or files generated from the report option to some target folder or API endpoint for error / success handling. For example, syncing all automation runs to central storage for auditing purpose. The special handling applies to all TagUI flows that are run.

Datatables for batch automation

Datatables are csv files which can be used to run your flows multiple times with different inputs.

A datatable (trade_data.csv) could look like this:

	#

	trade

	username

	password

	pair

	size

	direction

	1

	Trade USDSGD

	test_account

	12345678

	USDSGD

	10000

	BUY

	2

	Trade USDSGD

	test_account

	12345678

	USDJPY

	1000

	SELL

	3

	Trade EURUSD

	test_account

	12345678

	EURUSD

	100000

	BUY

To use it, you run your flow with tagui my_flow.tag trade_data.csv. TagUI will run my_flow.tag once for each row in the datatable (except for the header).

Within the flow, TagUI can use the variables trade, username, password, etc as if they were in the local object repository and the values will be from that run’s row.

To know which iteration your flow is in you can use the iteration variable:

echo current iteration: `iteration`
if iteration equals to 1
 // go to login URL and do the login steps
 www.xero.com

// do rest of the steps for every iteration

Object repositories for reusability

Object repositories are optional csv files which can store variables for use in flows. They help to separate your flows from your personal data (like login information for web flows), and allow you to share common information between multiple flows for easy updating.

Each flow has a local object repository and all flows share the global object repository. The local object repository is the tagui_local.csv in the same folder as the flow. The global object repository is the tagui_global.csv in the tagui/src/ folder.

An object repository could look like this:

	object

	definition

	email

	user-email-textbox

	create account

	btn btn–green btn-xl signup-btn

Within the flow, TagUI can use the objects email, create account as variables and they will be replaced directly by the definitions before it is run. Local definitions take precedence over global definitions.

If user-email-textbox was the identifier for some web text input, then you could use the following in your flow:

type `email` as my_email@email.com

Running flows within a flow

You can modularise your RPA workflows by breaking a large workflow file into many subflow files. For more complex RPA scenarios, you can even let a subflow run other subflows.

Some common reasons for doing that include the convenience of reusing the same subflow in other flows, doing something specific which is easier to organise by keeping the sequence of steps in a subflow, or storing your Python or JavaScript code and functions in separate subflows (using py begin and py finish code blocks for example).

A flow can run another flow, like this:

tagui login_crm.tag

Flows can also be stored in subfolders:

// Windows example
tagui CRM\login.tag

// Mac/Linux example
tagui CRM/login.tag

Variables in the parent flow are accessible in the child flow and vice versa:

// in this case, username and password variables are available in login.tag
username = 'jennifer'; password = '12345678';
tagui login.tag

// you can also define variables on separate lines instead of all in 1 line
username = 'jennifer'
password = '12345678'
tagui login.tag

// in login.tag you can define and return variables for its parent to use
echo `login_result`

You can even combine multiple sequences of steps into one subflow as follows. By designing a subflow this way, you can assign the variable action = 'login' in the parent flow to determine which sequence of steps gets executed when the subflow is called with tagui step:

// crm_steps.tag
if action equals to 'login'
 do some steps
 do some more steps

else if action equals to 'report'
 do some steps
 do some more steps

else if action equals to 'logout'
 do some steps
 do some more steps

else
 echo ERROR - action undefined

Turbo mode to run 10X faster

To run TagUI with turbo option (use with caution):

tagui flow.tag -turbo

or

tagui flow.tag -t

Most websites and desktop apps are not designed for the super-human speed user. If your RPA runs at a speed beyond what those websites are designed and tested for, you are surely going to run into problems with some apps. Problems could be fields and data not filling up properly, not triggering expected validations, form submissions with missing data, account being blocked etc.

And the problems might happen randomly, including working on your PC but not working on another PC due to difference in CPU speed. Because of this, using turbo mode option is not recommended. You may save some cheap computer time, but if something is broken or does not work, you may end up spending expensive human time (your time) to troubleshoot or fix.

However, this is very useful for some users for some specific scenarios. For eg, data collection from apps, data entry in web applications that can handle super-human speed reliably, as part of a chatbot doing backend RPA for user, for fast and rapid prototyping, perhaps taking part in RPA competitions and hackathons etc. Thoroughly test for your use case before using!

Visual automation tricks

For many steps, you can end the step with using ocr or using OCR to tell TagUI to interact on some UI element on the screen using OCR (optical character recognition). See the examples below. Steps which this can be done: click, rclick, dclick, hover, type, select, read, snap, exist(), present().

click Submit using ocr

if exist('Special Offer using ocr')
 click Add To Cart using OCR

// various usage combinations for select step
select Dress Color using OCR as Dark Blue using OCR
select dress_color.png as Bright Pink using ocr
select Dress Color using OCR as dark_black.png
select dress_color.png as bright_white.png

If you make the background of a UI element in a .png file 100% transparent using an image editor, TagUI will be able to target the element regardless of its background.

Conversely, you can also remove the foreground content near some anchor element like a frame, to allow you to OCR varying content in the empty area using the read step.

Writing Python within flows

You can write Python code in TagUI flows. Python needs to be installed separately [https://www.python.org/downloads/].

The py step can be used to run commands in Python (TagUI will call python on the command line). You can pass string values back to TagUI with print(). The stdout will be stored in the py_result variable in TagUI.

py a=1
py b=2
py c=a+b
py print(c)
echo `py_result`

You can also use py begin and py finish before and after a Python code block:

py begin
a=1
b=2
c=a+b
print(c)
py finish
echo `py_result`

You can pass a variable to Python like this:

phone = 1234567
py_step('phone = ' + phone)
py print(phone)
echo `py_result`

name = 'Donald'
py_step('name = "' + name + '"')
py print(name)
echo `py_result`

To pass and return more complex data, for example multiple variables, you can use JavaScript and Python JSON libraries to send and receive back JSON strings. See an example here [https://github.com/kelaberetiv/TagUI/issues/898#issuecomment-752833953] of passing 2 variables, doing some processing, and returning 2 variables.

Create log files for debugging

To do advanced debugging, you can create log files when running flows by creating an empty tagui_logging file in tagui/src/.

	my_flow.log stores step-by-step output of the execution.

	my_flow.js is the generated JavaScript file that was run.

	my_flow.raw is the expanded flow after parsing modules.

Running TagUI on the cloud

For cloud lovers, you can run TagUI on your web browser or phone using free Google Cloud [https://github.com/kelaberetiv/TagUI/issues/913]. You can run up to 5 sessions concurrently on different tabs of your browser.

For more control running on the cloud, you can run this Docker image [https://hub.docker.com/r/openiap/nodered-tagui] (use edge tag for the latest version) or Docker file [https://github.com/open-rpa/openflow/blob/master/OpenFlowNodeRED/Dockerfiletagui] on your preferred cloud vendor.

Or run on free Node-RED instance [https://app.openiap.io/] on OpenFlow. The Docker image, Docker file and OpenFlow cloud are maintained and sponsored by Allan Zimmermann [https://www.linkedin.com/in/skadefro/].

 Reference

Reference

Use this section to look up information on steps, helper functions and run options you can use. You can explore using the navigation headers.

Steps

The steps you can use in TagUI are listed here.

Mouse and keyboard

click

Left clicks on the identifier.

Can use DOM, XPath, Point, Image identifiers.

click [DOM/XPath/Point/Image]

Examples

click Main concepts
click //nav/div/div[2]/ul/li[4]/ul/li[1]/a
click (500,200)
click button.png

rclick

Right clicks on the identifier.

Can use DOM, XPath, Point, Image identifiers.

rclick [DOM/XPath/Point/Image]

See click for examples.

dclick

Double left clicks on the identifier.

Can use DOM, XPath, Point, Image identifiers.

dclick [DOM/XPath/Point/Image]

See click for examples.

hover

Moves mouse cursor to the identifier.

Can use DOM, XPath, Point, Image identifiers.

hover [DOM/XPath/Point/Image]

See click for examples.

type

Types into a web input. You can use [clear] to clear the field and [enter] to hit the Enter key.

Can use DOM, XPath, Point, Image identifiers.

type [DOM/XPath/Point/Image] as [text to type]

Examples

type search-term as John Wick
type //input[@name="search"] as John Wick
type (500,200) as John Wick
type input_field.png as John Wick

type search-term as [clear]John Wick[enter]
type //input[@name="search"] as [clear]John Wick[enter]
type (500,200) as [clear]John Wick[enter]
type input_field.png as [clear]John Wick[enter]

keyboard

Enters keystrokes directly.

keyboard [keys]

You can use the following special keys:

	[shift] [ctrl] [alt] [win] [cmd] [enter]

	[space] [tab] [esc] [backspace] [delete] [clear]

	[up] [down] [left] [right] [pageup] [pagedown]

	[home] [end] [insert] [f1] .. [f15]

	[printscreen] [scrolllock] [pause] [capslock] [numlock]

Examples

keyboard [win]run[enter]
keyboard [printscreen]
keyboard [ctrl]c
keyboard [tab][tab][tab][enter]

keyboard [cmd][space]
keyboard safari[enter]
keyboard [cmd]c

mouse

Explicitly sends a mouse event at the current mouse position.

In most cases, you want you use click instead.

mouse down
mouse up

Web

visit

Visits the provided URL.

[URL]

Examples

https://google.com

select

Selects a dropdown option in a web input.

Can use DOM, XPath identifiers.

select [DOM/XPath of select input element] as [option value or text]

Examples

select variant as blue

table

Saves table data to a csv file, base on the table number on webpage or its XPath identifier.

table [table number] to [filename.csv]
table [XPath] to [filename.csv]

Examples

table 1 to regional_exchange_rates.csv
table (//table)[2] to global_exchange_rates.csv
table //table[@name='report'] to report.csv

popup

Modifies the next steps to be run in a new tab.

popup [unique part of new tab's URL]
 [steps]

Examples

popup confirm
 click Confirm

frame

Modifies the next steps to use the DOM or XPath in a frame or subframe.

frame [frame name]
 [steps]

frame [frame name] | [subframe name]
 [steps]

Examples

frame navigation
 click Products

frame main | register
 click Register

download to

Specifies a location to store file downloads. The default location is the folder of the TagUI flow.

download to [folder location]

upload

Uploads file to a website.

Only DOM identifier can be used.

upload [DOM of upload element] as [filename]

Examples

upload #element_id as report.csv

api

Call a web API and save the raw response to the variable api_result.

If the response is in JSON, api_json will automatically be created.

api https://some-api-url

Examples

api https://api.github.com/repos/kelaberetiv/TagUI/releases
echo `api_result`
author = api_json[0].author.login

For an advanced example of using api step, setting POST/GET method, header and body, see this example from aito.ai [https://aito.document360.io/docs/tagui] - a web-based machine learning solution for no-coders and RPA developers. In the example, api step is used to make a machine-learning inference to generate the account code of an invoice item, based on its description and price. aito.ai’s free tier comes with 2000 API calls/month and it works perfectly with TagUI.

Excel

Perform read, write, copy, delete actions on Excel files using standard Excel formula like this one [workbook]sheet!range. This feature works with both Windows and Mac Excel apps. See this link [https://github.com/kelaberetiv/TagUI/issues/1081#issuecomment-902058917] for notes of passed test cases and known limitations for this feature. To access a password-protected Excel file, use excel_password = 'password'.

variables

You can use variables in your Excel formula, for eg range or sheet. Various Excel file formats are supported, be sure to put the file’s .extension as part of the formula so that TagUI can recognise that the instruction is an Excel step instead of some JavaScript code.

[`workbook`.xlsx]`sheet`!`range` = 123
data = [`workbook`.xlsx]`sheet`!`range`

visibility

By default, the Excel app will be opened and run in the background. If you want the automated actions on Excel to be in focus in foreground, you can set it with excel_focus = true in your workflow. Use excel_focus = false to set it off again in your workflow.

For some usage scenarios, you might not even want the Excel app to be visible in the background. In that case, you can set excel_visible = false in your workflow to run Excel invisibly. Use excel_visible = true to make Excel visible again in your RPA workflow.

read

Read data from Excel files. Both relative and absolute file paths supported. Error will be shown if the specified file or sheet does not exist. In below line, range can be a cell or range in Excel.

variable = [workbook]sheet!range

Reading columns and rows can be done using standard Excel formula for range, for example A:A (column A), B:D (columns B to D), 2:2 (row 2), 3:5 (rows 3 to 5). There is no standard Excel formula for selecting the entire range of a sheet, so you will have to provide the actual range required.

Examples

top_profit = [Monthly Report.xlsx]August!E10
top_salesman = [Monthly Report.xlsx]August!E11
data_array = [Quarterly Metrics.xlsx]Main!B3:G100
data_array = [C:\Reports\June.xls]Sheet1!A1:C2

data_array = [C:\Reports\June.xls]Sheet1!A:A
data_array = [C:\Reports\June.xls]Sheet1!B:D
data_array = [C:\Reports\June.xls]Sheet1!2:2
data_array = [C:\Reports\June.xls]Sheet1!3:5

TagUI’s backend language is JavaScript, thus data_array can be used just like a JavaScript array.

// to work on data in data_array cell by cell
for row from 0 to data_array.length-1
 for col from 0 to data_array[row].length-1
 echo `data_array[row][col]`

Note - There was a limitation on reading multiple rows and columns, for eg B:D and 3:5 (data array returned will be a 1 x N array instead of the correct row x column array). This is now fixed in v6.87. Get your copy with tagui update command or from MS Word Plug-in Update TagUI button.

write

Write data to Excel files. Both relative and absolute file paths supported. If the specified file does not exist, a new file will be created. If the sheet does not exist, a new sheet will be created. If the data is an array, the given cell will be used as the top-left cell to write the range of cells.

[workbook]sheet!cell = variable

Examples

[Monthly Report.xlsx]August!E10 = 12345
[Monthly Report.xlsx]August!E11 = "Alan"
[Monthly Report.xlsx]August!E12 = variable
[Quarterly Metrics.xlsx]Main!B3 = data_array

TagUI’s backend language is JavaScript, thus range data can be defined just like a JavaScript array.

// to assign a set of range data with 2 rows of 3 columns
[C:\Reports\June.xls]Sheet1!A1 = [[1, 2, 3], [4, 5, 6]]
[C:\Reports\June.xls]Sheet1!A1 = [[variable_1, variable_2, variable_3], [4, 5, 6]]

// example spreadsheet data with #, name and country
[Participants.xlsx]Sheet1!A1 = [['1', 'John', 'USA'], [2, 'Jenny', 'Russia'], [3, 'Javier', 'Serbia']]

// get the next row count for the example spreadsheet
column_A = [Participants.xlsx]Sheet1!A:A
next_row = column_A.length + 1

// write a new row accordingly to example spreadsheet
[Participants.xlsx]Sheet1!A`next_row` = [[next_row, 'Janice', 'Brazil']]

copy

Copy data across Excel files. Both relative and absolute file paths supported. Error will be shown if the specified source file or sheet does not exist. If the specified destination file does not exist, a new file will be created. If the destination sheet does not exist, a new sheet will be created. If the data is an array, the given cell will be used as the top-left cell to write the range of cells.

[workbook]sheet!cell = [workbook]sheet!range

Examples

[Monthly Report.xlsx]August!A1 = [Jennifer Report.xlsx]August!A1
[Monthly Report.xlsx]August!A1 = [Jennifer Report.xlsx]August!A1:E200

delete

Delete data in Excel files. Both relative and absolute file paths supported. Error will be shown if the specified file or sheet does not exist. Delete a range of cells by assigning an empty array to it.

[workbook]sheet!cell = ""

Examples

[Monthly Report.xlsx]August!E10 = ""
[Quarterly Metrics.xlsx]Main!A1 = [["", "", ""], ["", "", ""]]

Word

You can read the text contents of a Microsoft Word document simply by assigning its filename to a variable as follows. TagUI will automate Microsoft Word to copy out the text contents and assign to the variable. Note that you need to have Microsoft Word installed on your computer. This feature works for both Windows and Mac.

Examples for Windows

word_text = [Research Report.docx]
word_text = [C:\Users\Jennifer\Desktop\Report.docx]
word_text = [FY2021 Reports\Research Report.docx]

filename = 'C:\\Users\\Jennifer\\Desktop\\Report'
word_text = [`filename`.docx]
filename = 'Research Report'
word_text = [`filename`.docx]

Examples for Mac

word_text = [Research Report.docx]
word_text = [/Users/jennifer/Desktop/Report.docx]
word_text = [FY2021 Reports/Research Report.docx]

filename = '/Users/jennifer/Desktop/Report'
word_text = [`filename`.docx]
filename = 'Research Report'
word_text = [`filename`.docx]

After reading the text content into a variable, you can process it using TagUI’s helper functions such as get_text() and del_chars() to retrieve specific information required for your RPA scenario. Standard JavaScript functions can also be used to do string processing, for more information google javascript how to xxxx. After reading the text content from a Word document, TagUI will close Microsoft Word and continue with the rest of the automation steps.

PDF

You can read the text contents of a PDF file simply by assigning its filename to a variable as follows. TagUI will automate the PDF viewer app to copy out the text contents and assign to the variable. On Windows, you will need the free Adobe Acrobat Reader [https://get.adobe.com/reader/] and set it as your default PDF viewer. On Mac, TagUI will use the default Preview app that can already view PDF files.

Examples for Windows

pdf_text = [Research Report.pdf]
pdf_text = [C:\Users\Jennifer\Desktop\Report.pdf]
pdf_text = [FY2021 Reports\Research Report.pdf]

filename = 'C:\\Users\\Jennifer\\Desktop\\Report'
pdf_text = [`filename`.pdf]
filename = 'Research Report'
pdf_text = [`filename`.pdf]

Examples for Mac

pdf_text = [Research Report.pdf]
pdf_text = [/Users/jennifer/Desktop/Report.pdf]
pdf_text = [FY2021 Reports/Research Report.pdf]

filename = '/Users/jennifer/Desktop/Report'
pdf_text = [`filename`.pdf]
filename = 'Research Report'
pdf_text = [`filename`.pdf]

After reading the text content into a variable, you can process it using TagUI’s helper functions such as get_text() and del_chars() to retrieve specific information required for your RPA scenario. Standard JavaScript functions can also be used to do string processing, for more information google javascript how to xxxx. After reading the text content from a PDF file, TagUI will close the PDF viewer and continue with the rest of the automation steps.

Using variables

read

Gets some text or value and stores it in a variable.

Can use DOM, XPath, Region, Image identifiers.

read [DOM/XPath/Region/Image] to [variable]

When you provide a Region or Image identifier, TagUI uses OCR (Optical Character Recognition) to read the characters from the screen.

Examples

read //p[@id="address"] to address

read //p[@id="address"]/@class to address-class

read (500,200)-(600,400) to id-number

read frame.png to email

assign

Saves text to a variable.

[variable] = [value]

When using text in the value, surround the text in quotes, like “some text”. This is actually treated by TagUI as JavaScript, so you can assign numbers to variables or use other JavaScript functions. The variable name needs to be a single word and cannot start with a number, and it is case sensitive.

Examples

count = 5
username = "johncleese"
fullname = firstname + lastname

access

To access the value of a variable in most steps, surround the variable in backticks, like `` my_variable ``. The following is an example of accessing a variable in the echo step.

Examples

my_variable = "hello world"
echo `my_variable`
// output: hello world

However, in certain steps like if conditions [https://tagui.readthedocs.io/en/latest/main_concepts.html#if-conditions], for loops [https://tagui.readthedocs.io/en/latest/main_concepts.html#for-loops] and helper functions [https://tagui.readthedocs.io/en/latest/main_concepts.html#helper-functions], the variable can be accessed directly without backticks. For more information, see docs for the relevant step.

Examples

a = "hello"
b = "world"
if a equals to b
 echo same
 // output:

my_variable = 3
for n from 1 to my_variable
 echo `n`
 // output: 1
 // 2
 // 3

my_variable = "some text to copy"
clipboard(my_variable)

concatenation

To concatenate variables, the syntax varies depending on whether you are doing so within a step. The following examples show the difference between concatenating variables within and outside the echo step.

Examples

echo `a` `b`
// output: hello world

a = "hello"
b = "world"
c = a + " " + b
echo `c`
// output: hello world

File saving/loading

dump

Saves text to a new file.

dump [text] to [filename]
dump [`variable`] to [filename]

// creates blank CSV file with header
dump First Name,Last Name to names.csv

write

Saves a new line of text to an existing file.

write [text] to [filename]
write [`variable`] to [filename]

Examples

write firstname,lastname to names.csv
write `fullreport` to report.txt

load

Loads file content to a variable.

load [filename] to [variable]

Examples

load report.txt to report

snap

Saves a screenshot of the whole page, an element or a region.

Can use DOM, XPath, Region, Image identifiers.

snap [DOM/XPath/Region/Image/page] to [filename]

If you use page as the identifier, it takes a screenshot of the whole webpage.

Examples

snap logo to logo.png

snap page to webpage.png

snap (0,0)-(100,100) to image.png

Showing output

echo

Shows some output on the command line.

echo [text]
echo [`variable`]

Examples

echo Flow has started
echo The user is `username`

show

Shows element text directly on the command line.

Can use DOM, XPath identifiers.

show [DOM/XPath]

Examples

show review-text

check

Shows some output on the command line based on a condition.

check [condition] | [text if true] | [text if false]

Examples

check header_home_text equals to "Home" | "header text is correct" | "header text is wrong"

Custom code

js

Runs JavaScript code explicitly. TagUI has direct access to the JavaScript variables.

js [JavaScript statement]

js begin
[JavaScript statements]
js finish

Examples

js obj = JSON.parse(api_result)
dump `obj` to result.json

js begin
obj = JSON.parse(api_result)
randomInteger = Math.floor(Math.random() * Math.floor(5)) + 1
js finish
dump `obj` to result.json

// declare and initilise variable to use it inside/outside js code block
a = ""
js begin
a = "some string"
js finish
echo `a`

py

Runs Python code and saves the stdout to the variable py_result as a string.

py [Python statement]

py begin
[Python statements]
py finish

Examples

py result = 2 + 3
py print(result)
echo `py_result`

py begin
import random
random_integer = random.randint(1,6)
print(random_integer)
py finish
echo `py_result`

See this link for more examples and usage patterns on running Python code.

run

Runs a command in Command Prompt or Terminal and saves the stdout to the variable run_result.

run [shell command]

Examples

run cmd /c mkdir new_directory

vision

Runs Sikuli code.

vision [Sikuli statement]

vision begin
[Sikuli statements]
vision finish

Examples

vision click("button1.png")

dom

Runs code in the browser dom and saves returned value to the variable dom_result.

dom [JavaScript statement to run in the DOM]

dom begin
[JavaScript statements to run in the DOM]
dom finish

Examples

// goes back to previous page
dom window.history.back()

// returns text of an element
dom return document.querySelector('#some_id').textContent

r

Runs R statements and saves the stdout to the variable r_result.

r [R statement]

r begin
[R statements]
r finish

Miscellaneous

wait

Explicitly wait for some time.

wait [seconds to wait]
wait [seconds to wait] s
wait [seconds to wait] seconds

Examples

wait 5.5
wait 10 s
wait 20 seconds

timeout

Changes the auto-wait timeout when waiting for web elements to appear (default 10 seconds).

timeout [seconds to wait before timeout]

Examples

timeout 300

ask

Prompts user for input and saves the input as the variable ask_result.

ask [prompt]

Examples

ask What is the date of the receipt? (in DD-MM-YYYY)
type search as `ask_result`

live

Run steps interactively and immediately see the output. The user must enter “done” before the flow continues.

live

tagui

Runs another TagUI flow. Checks the flow’s folder.

tagui [flow file]
tagui [folder/flow file]

Examples

tagui update-forex.tag
tagui flows/update-forex.tag

comment

Adds a comment. If you are inside a code block, for example an if condition or for loop, be sure to indent your comment accordingly to let TagUI run correctly after it converts into JavaScript code.

// [comment]

Examples

// updates the forex rates

telegram

Sends a Telegram notification, for example, to update on automation completion or exception.

First, message @taguibot [https://t.me/taguibot] to authorise it to send messages to your Telegram. Then in TagUI:

telegram [id] [message]

Examples

// this line sends message to Telegram user with ID 1234567890, \n means a new line
telegram 1234567890 Hello Alena,\n\nYour HR onboarding bot has completed successfully.

// show telegram_result variable - 'success' means sent, 'fail' means sending failed
echo Telegram message - `telegram_result`

// if condition to check telegram_result 'success' or 'fail' and handle accordingly
if telegram_result equals to 'success'
 echo Message sent successfully.
else
 echo Message sending failed.

Note that the telegram step requires an internet connection. This feature is being hosted at https://tebel.org, but the source code [https://github.com/kelaberetiv/TagUI/tree/master/src/telegram] is on GitHub if you wish to host this feature on your own cloud or server. The implementation is in pure PHP without any dependencies.

The only info logged is chat_id, length of the message, datetime stamp (to prevent abuse). If you wish to host on your own, first read through this link to learn more about Telegram Bot API, creating your bot API token and setting up the webhook - https://core.telegram.org/bots

Run options

You can use the below options when running tagui.

For example, the command below runs my_flow.tag without showing the web browser, while storing the flow run result in tagui_report.csv.

tagui my_flow.tag -headless -report

-deploy or -d

Deploys a flow, creating a shortcut which can be double-clicked to run the flow. If the flow file is moved, a new shortcut must be created. The flow will be run with all the options used when creating the shortcut.

-headless or -h

Runs the flow with an invisible Chrome web browser (does not work for visual automation).

-nobrowser or -n

Runs without any web browser, for example to perform automation only with visual automation.

-report or -r

Tracks flow run result in tagui/src/tagui_report.csv and saves html logs of flows execution.

-turbo or -t

Run automation at 10X the speed of normal human user. Read caveats at Advanced concepts!

-quiet or -q

Runs without output to command prompt except for explicit output (echo, show, check steps and errors etc). To have fine-grained control on showing and hiding output during execution (eg hiding password from showing up), use quiet_mode = true and quiet_mode = false in your flow.

-edge or -e

Runs using Microsoft Edge browser instead of Chrome (can be used with -headless option).

my_datatable.csv

Uses the specified csv file as the datatable for batch automation. See datatables.

input(s)

Add your own parameter(s) to be used in your automation flow as variables p1 to p8.

For example, from the command prompt, below line runs register_attendence.tag workflow using Microsoft Edge browser and with various student names as inputs.

tagui register_attendence.tag -edge Jenny Jason John Joanne

Inside the workflow, the variables p1, p2, p3, p4 will be available for use as part of the automation, for example to fill up student names into a web form for recording attendence. The following lines in the workflow will output various student names given as inputs.

echo `p1`
echo `p2`
echo `p3`
echo `p4`

See other deprecated options.

Helper functions

csv_row()

Formats an array for writing to csv file.

Examples

read name_element to name
read price_element to price
read details_element to details
write `csv_row([name, price, details])` to product_list.csv

count()

Gets the number of elements matching the identifier specified. Note that the identifier needs to be in single quotes ''.

Examples

rows = count('table-rows')

clipboard()

Puts text onto the clipboard, or gets the clipboard text (if no input is given).

Examples

clipboard('some text')
keyboard [ctrl]v

keyboard [ctrl]c
contents = clipboard()

url()

Gets the URL of the current web page.

Examples

if url() contains 'success'
 click button1

title()

Gets the title of the current web page.

Examples

if title() contains 'Confirmation'
 click button1

text()

Gets all text content of the current web page.

Examples

if text() contains 'success'
 click button1

timer()

Gets the time elapsed in seconds in between each running of this function.

Examples

timer()
click button1
click button2
click button3
echo `timer()`

exist()

Waits until the timeout for an element to exist and returns a JavaScript true or false depending on whether it exists or not.

Note that the identifier is surrounded by quotes.

Can use DOM, XPath, Image identifiers.

exist('[DOM/XPath/Image]')

Examples

if exist('//table')
 click button1

present()

Same as exist() except that it does not wait until the timeout and immediately returns true or false.

Note that the identifier is surrounded by quotes.

Can use DOM, XPath, Image identifiers.

Examples

if present('//table')
 click button1

mouse_xy()

Gets the x, y coordinates of the current mouse position.

Particularly useful in live mode.

Examples

echo `mouse_xy()`

mouse_x()

Gets the x coordinate of the current mouse position as a number, eg 200.

Examples

hover element.png
x = mouse_x() + 200
y = mouse_y()
click (`x`,`y`)

mouse_y()

Gets the y coordinate of the current mouse position as a number, eg 200.

Examples

hover element.png
x = mouse_x() + 200
y = mouse_y()
click (`x`,`y`)

get_files()

Returns an array of files and folders in a given folder. Both relative and absolute paths supported.

Examples

// list of files in the same folder as the flow file
list = get_files('.')

// list of files in the Desktop folder of user Alan
// note double backslash because of JavaScript string
list = get_files('C:\\Users\\Alan\\Desktop')

// alternatively, use single forward slash instead
list = get_files('C:/Users/Alan/Desktop')

// showing the list of files after retrieving it
// JavaScript array start from 0 for 1st element
for n from 0 to list.length-1
 echo `list[n]`

// checking to process a specific file extension
for n from 0 to list.length-1
 if list[n] contains '.XLSX'
 echo `list[n]`

get_text()

Extracts text between 2 provided anchors from given text. Optional 4th parameter for occurrence during multiple matches (for example 3 to tell the function to return the 3rd match found).

Examples

pdf_text = 'Name: John State: Texas City: Plano Contact: ...'

name = get_text(pdf_text, 'Name:', 'State:')
state = get_text(pdf_text, 'State:', 'City:')
city = get_text(pdf_text, 'City:', 'Contact:')

echo `name`, `state`, `city`

del_chars()

Cleans data by removing provided character(s) from given text and returning the result.

Examples

pdf_text = 'Name: John\n State: Texas\t City: Plano\n Contact: ...'
echo `del_chars(pdf_text, '\n\t:')`

get_env()

Returns the value of given environment variable from the operating system.

Examples

// getting %USERPROFILE% variable for Windows
echo `get_env('USERPROFILE')`
home_dir = get_env('USERPROFILE')

// getting $HOME variable for Mac or Linux
echo `get_env('HOME')`
home_dir = get_env('HOME')

 Tools

Tools

These are separate apps which help you in writing TagUI flows.

TagUI Chrome Extension

The TagUI Chrome extension (download [https://chrome.google.com/webstore/detail/tagui-rpa-web-recorder/gjdajlcpkkjgjjokkekiniengajiamnk/]) helps you write web flows.

It records steps such as page navigation, clicking of web elements and entering information. It then displays the steps for you to paste into your flow.

Usage

	Go to the website URL you want to start the automation at.

	Click the TagUI icon, then Start.

	Carry out the steps you want to automate, or right click on elements to record other steps.

	Click the TagUI icon, then Stop.

	Click Export to view the generated TagUI steps.

The recording isn’t foolproof (for example, the underlying recording engine cannot capture frames, popup windows or tab key input). It’s meant to simplify flow creation with some edits, instead of typing everything manually.

See this video [https://www.youtube.com/watch?v=bFvsc4a8hWQ] for an example of recording a sequence of steps, editing for adjustments and playing back the automation.

TagUI Writer, Screenshoter & Editor

TagUI Writer is a Windows app helps write TagUI flows. When pressing Ctrl + Left-click, a popup menu appears with the list of TagUI steps for you to paste into your text editor.

TagUI Screenshoter app helps in capturing screenshots for TagUI visual automation.

TagUI Editor allows you to edit and run TagUI scripts via AutoHotKey.

Download these here. [https://github.com/adegard/tagui_scripts]. These third-party tools are created by Arnaud Degardin @adegard [https://github.com/adegard].

[image: _images/TagUI_Editor.gif]

RPA for Python (for Python users)

RPA for Python is a Python package (pip install rpa to install) which allows you to use TagUI through a Python API. Check out the documentation [https://github.com/tebelorg/RPA-Python]. It is based on a fork of TagUI optimised for use by the Python package. Created and maintained by TagUI’s creator Ken Soh @kensoh [https://github.com/kensoh].

[image: _images/tagui_python.gif]

 Frequently Asked Questions

Frequently Asked Questions

How is TagUI licensed?

TagUI is a free, open-source, cross-platform software released under the Apache 2.0 license.

How do I find the XPath of a web element?

In Chrome/Edge, right-click on the element, click Inspect, right-click on the highlighted HTML, then:

[image: _images/find_xpath.png]
For some web pages, the XPath of an element can change. To combat this, you can find a stable element in the web page and writing a custom XPath relative to that stable element.

XPath is very powerful and can allow you to select web elements in many ways. Learn more about XPath at W3Schools [https://www.w3schools.com/xml/xpath_intro.asp]. Alternatively, check out SelectorsHub Chrome extension [https://chrome.google.com/webstore/detail/selectorshub/ndgimibanhlabgdgjcpbbndiehljcpfh?hl=en] tool.

How do I find the id, name, class or other attributes of a web element?

In Chrome/Edge, right-click on the element, click Inspect. There will be some highlighted HTML, like this:

[image: _images/element_attributes.png]
This highlighted element has a class attribute of “chat-line__body”. It doesn’t have any id or name attribute

How do I use the Command Prompt?

Hold the Windows key and press R. Then type cmd and press Enter to enter the Command Prompt.

From here, you can run a command by typing it and pressing Enter.

How do I use the Terminal?

Hold Command and press spacebar, then type terminal and press Enter.

From here, you can run a command by typing it and pressing Enter.

What are csv files?

CSV files are files which stores data in a table form. They can be opened with Microsoft Excel and Google Sheets. Each line is a row of values. The values are split into different columns by commas ,, which is why CSV stands for Comma Separated Values.

Running flows on a fixed schedule

It is often useful to run flows automatically on a fixed schedule: monthly, weekly, daily or even every 5 minutes.

On Windows, use the Task Scheduler [https://www.digitalcitizen.life/how-create-task-basic-task-wizard].

 Index

Index

 Deprecated command line options

Deprecated command line options

	chrome

	run on visible Chrome web browser instead of invisible PhantomJS (first install Chrome)

	firefox

	run on visible Firefox web browser instead of invisible browser (first install Firefox)

	speed

	skip 3-second delay between datatable iterations (and skip restarting of Chrome browser)

	upload

	upload automation flow and result to hastebin.com (expires 30 days after last view)

	debug

	show run-time backend messages from PhantomJS mode for detailed tracing and logging

	test

	testing with check step test assertions for CI/CD integration (output XUnit XML file)

	baseline

	output execution log and relative-path output files to a separate baseline directory

 Troubleshooting Windows

Troubleshooting Windows

	If you see MSVCR110.dll is missing error, install Visual C++ Redistributable

	If you cannot unzip to C:\ folder, unzip to your Windows Desktop instead

Troubleshooting macOS

	For newer versions of macOS (Monterey onwards), you will need to install PHP separately [https://github.com/kelaberetiv/TagUI/issues/1137#issuecomment-989465983]

	macOS now has tighter security controls, see solutions for the PhantomJS [https://github.com/kelaberetiv/TagUI/issues/601] and Java popups [https://github.com/kelaberetiv/TagUI/issues/598]

Troubleshooting Linux

	You may need to google and install PHP on Linux, for eg Ubuntu does not come with PHP

	On Linux, visual automation, OCR and keyboard step require some manual setup [https://sikulix-2014.readthedocs.io/en/latest/newslinux.html]

_static/tagui-logo.png

_static/text.png
tifiers
-

he form of (x, y)
uter normally whil

_images/find_xpath.png
[% (] | Eements Console Sources Network Performance Memory Application Security Audits
:before
> <hloe/nt
<script sre="https://fast.uistia.con/enbed/medias/kpi2khBoGn. jsong" async></script>
‘https://fast.wistia. con/assets/external/E-vL. is" async</script>

‘wistia_enbed wistia_async_kpi2kngosp popoves

ink wistia_embed_initialized" s

Add attribute

Edit as HTML
wite Delete element
<script src="https://3}6x622bx1aqlonnt 3b6yda-upengine. netna-ss ' e
» cscripto.c/script- Cut element
» <div class-notiticstion-bamer notification-banner—sticky" i Copyelement 1
e 711 bide cement Pasto carmen:
Class=" request-support" onclick-"return false;>./a~ | Forcestate b
“request-support-popover">..</div= Break on > | Copy outerHTML
wistia_19_style" type="text/css" class='wistia_ injected. Emar
Jseripts Expand recursively puyommyray
Jscript> Collapse chidren =SS
»<script type="text/javascript suc/scripts Gt T
» <div class="sub—footer".</div-
Focus

footer”
ext/javascript
‘text/javascript

role="contentinfo'
‘hitps://3]6x622bx1991aamet3b6, Blup-includes/;s/jauery/
‘https://316x622bx1qqlanmutIbeye n/up-includes/3s/jauery/

» <footer class=
<script typ
<script type=

_images/tagui-logo.png

_images/TagUI_Editor.gif
| 5 TagulEdior

BFie et @Help b Eecute F0penlog
£ C:\TagUl'tagui‘meteo

[Pto://ww metecive /previsione meteo/alia/ Lombardia/Miano/ 1/
read //[@id="box previsoni-content”}table tbocy Ar4]Ad[3]to prev
|1/send emai it result

Imsg=previzionipe- domar:+ prev

i [echonsg

jsnap page]

_static/up-pressed.png

_images/element_attributes.png
<div class="chat-line_ trash” data-behaviol
“delete_chat_line"></div>

»..

chat-line_body">..</div>

» <div clas:
</div>
</article>
» <article class="chat-line chat-line--rich-text " data-

s0

_static/up.png

_static/cmdline.gif
B8 Administrator: Windows PowerShell

C:\Users\ZBOOK15G5_46\home\projects\react-nodegui-starter (master)> _

| B

_images/tagui_python.gif
Z Jupyter tagui_python e A g

Fle Edt View Inset Cel Kemel Widgets Help Tusted # |Python3 O

+ % BB 4 ¢ HRn B C » Code e

In [1): import tagui as t

In (2]: t.init(visual automation = True)

Out[2]: True I

| g

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 TagUI

