
TagUI
Release 6.110.0

Jul 09, 2023

Contents:

1 Installation 3

2 Main concepts 5

3 Advanced concepts 13

4 Reference 19

5 Tools 41

6 Frequently Asked Questions 43

i

ii

TagUI, Release 6.110.0

A free, open-source, cross-platform RPA tool that helps you automate your desktop, web, mouse and keyboard actions
easily. Here’s what a simple TagUI flow looks like:

// below is an example to login to Xero accounting website
https://login.xero.com/identity/user/login

type email as user@gmail.com
type password as 12345678
click Log in

// besides web identifiers, images of UI elements can be used

type email_box.png as user@gmail.com
type password_box.png as 12345678
click login_button.png

// (x,y) coordinates of user-interface elements can also be used

type (720,400) as user@gmail.com
type (720,440) as 12345678
click (720,500)

Contents: 1

TagUI, Release 6.110.0

2 Contents:

CHAPTER 1

Installation

1.1 Windows

1. Read the above, or download zip file TagUI v6.110 for Windows

2. Unzip the contents to C:\

3. Install OpenJDK for Windows

4. Install Chrome web browser

5. Add c:\tagui\src to start of path

6. Open Command Prompt

7. Copy, paste and run this command:

tagui c:\tagui\flows\samples\1_google.tag

8. Finally, run this command to pull the latest features and bug fixes

tagui update

9. Having problems? Click here. You have run your first TagUI flow!

To install TagUI Microsoft Word Plug-in (a full-featured app to make RPA very easy), download the MS Word
Plug-in installer, unzip the file and double-click Setup.exe. See this video by RPA Learners on installing and running
your first MS Word RPA bot. Download MS Excel Plug-in installer to define RPA data parameters in Excel and run
TagUI from Excel. See this video by RPA Learners on installing and creating visualisations with the Excel plug-in.

1.2 macOS / Linux

1. Download TagUI v6.110 for macOS or Linux

2. Unzip the contents to your desktop on macOS, or /home/your_userid on Linux

3

https://github.com/kelaberetiv/TagUI/releases/download/v6.110.0/TagUI_Windows.zip
https://corretto.aws/downloads/latest/amazon-corretto-8-x64-windows-jdk.msi
https://www.google.com/chrome/
https://www.c-sharpcorner.com/article/add-a-directory-to-path-environment-variable-in-windows-10/
https://github.com/kelaberetiv/TagUI/issues?q=is%3Aissue+is%3Aopen+in%3Atitle+fixed+OR+done+
https://storage.googleapis.com/tagui-dependencies/TagUI%20WordAddIn/TagUIWordAddInSetupV3.18.zip
https://storage.googleapis.com/tagui-dependencies/TagUI%20WordAddIn/TagUIWordAddInSetupV3.18.zip
https://www.youtube.com/watch?v=mtiuzU6e4XE
https://github.com/kelaberetiv/TagUI/releases/download/v6.64.0/TagUIExcelAddInSetupv3.06.zip
https://www.youtube.com/watch?v=YsA9hpveROs
https://github.com/kelaberetiv/TagUI/releases/download/v6.110.0/TagUI_macOS.zip
https://github.com/kelaberetiv/TagUI/releases/download/v6.110.0/TagUI_Linux.zip

TagUI, Release 6.110.0

3. Install OpenJDK for macOS or Linux

4. Install Chrome web browser

5. Open Terminal

6. Copy, paste and run these commands, replacing your_tagui_path accordingly:

sudo ln -sf /your_tagui_path/tagui/src/tagui /usr/local/bin/tagui

tagui /your_tagui_path/tagui/flows/samples/1_google.tag

7. Finally, run this command to pull the latest features and bug fixes

tagui update

8. Having problems? Click here. You have run your first TagUI flow!

4 Chapter 1. Installation

https://corretto.aws/downloads/latest/amazon-corretto-8-x64-macos-jdk.pkg
https://corretto.aws/downloads/latest/amazon-corretto-8-x64-linux-jdk.tar.gz
https://www.google.com/chrome/
https://github.com/kelaberetiv/TagUI/issues?q=is%3Aissue+is%3Aopen+in%3Atitle+fixed+OR+done+

CHAPTER 2

Main concepts

2.1 Flows

TagUI automates your actions by running flows, which are text files with .tag file extension.

You can run a flow in the Command Prompt/Terminal like this:

tagui my_flow.tag

TagUI looks for my_flow.tag in your current working directory. You can also provide the full path:

tagui c:\tagui\samples\1_google.tag

You can also run flows on a fixed schedule.

2.1.1 Run by double-click

You can create a shortcut file with -deploy:

tagui my_flow.tag -deploy

or using the shortcut -d:

tagui my_flow.tag -d

This creates a shortcut (my_flow.cmd) to run your flow just by double clicking the shortcut. The shortcut is in the
same folder as your flow, but you can move it to your desktop or anywhere else.

5

TagUI, Release 6.110.0

If you want to create the shortcut with options like -headless (-h), you can include them:

tagui my_flow.tag -h -d

Note: If you move your flow file to another folder, you will need to create a new shortcut file.

2.1.2 Run from a URL

You can also run a flow directly from a URL:

tagui https://raw.githubusercontent.com/kelaberetiv/TagUI/master/flows/samples/1_
→˓google.tag

2.1.3 Hide the browser

You can run web flows without showing web browser by running TagUI with -headless option.

tagui my_flow.tag -headless

or using the shortcut -h:

tagui my_flow.tag -h

This allows you to continue using your desktop normally while the flow is running, but it will not work if your flow
uses visual automation, because it reads and clicks what is on your screen.

2.2 Steps

Flows are made out of steps. Below are some common steps.

You can see the full list of steps in the steps reference.

2.2.1 click

One of the most common steps is click. You can use it to click on a web element:

click Getting started

This command tells TagUI to try to click on any element which has “Getting started” as its “id”, “name”, “class” or
“title” attributes (How to find an element’s attributes), or as a last resort, has “Getting started” in its text.

This method usually works for targeting what you want, but you can be more explicit by providing an XPath. XPath
is a powerful way to choose which web element you want to target. For example:

6 Chapter 2. Main concepts

TagUI, Release 6.110.0

click //a[@class="icon icon-home"]

You can also click on a certain point on your screen:

click (500,300)

Here, 500 and 300 are x-y coordinates. This command clicks on a point which is 500 pixels from the left of your
screen and 300 pixels from the top of your screen. A good way to discover which coordinates to input is to use the
mouse_xy() helper function in live mode.

Lastly, you can use visual automation to click where it matches a previously saved image. This command looks for
button.png in the same folder as your flow, then looks for a similar image on your screen, and clicks it:

click button.png

It’s often a good idea to keep your flows and images organised. You can create a folder (eg. named images) for your
images and use the image like this instead:

click image/button.png

2.2.2 visit

You can visit a webpage simply by entering the url:

https://somewebsite.com

2.2.3 type

You can type into web inputs. This command finds the element “some-input” in the same way as for the click step and
types “some-text” into it:

type some-input as some-text

You can use [clear] to clear the input and [enter] to hit the Enter key:

type some-input as [clear]some-text[enter]

You can also use an image as the target, just like with the click step:

type some-input.png as some-text

2.2.4 read

The read step allows you to save text from web elements or from the screen into a variable.

This command finds the element “some-element” and saves its value into a variable called “some-variable”:

read some-element to some-variable

read can also use visual automation and OCR to read text from a region of your screen. The output from this may not
be completely accurate as it relies on OCR.

This command reads all the text in the rectangle formed between the points (300,400) and (500,550):

2.2. Steps 7

TagUI, Release 6.110.0

read (300,400)-(500,550) to some-variable

You can also use XPath to read some attribute values from web elements. This command reads the id attribute from
the element:

read //some-element/@some-attribute to some-variable

2.2.5 assign

You can assign values into variables. This makes them easier to reference and work with.

This example uses the count() helper function, counts the number of elements found with id/name/text with ‘row’
in them and assigns it to a variable row_count for later use:

row_count = count('row')

2.3 Identifiers

You have probably noticed that different steps have different ways that they target elements, called identifiers. Let’s
look at the different types of identifiers.

Note: The DOM and XPath identifiers only work for Chrome/Edge. To automate other browsers, use the Point/Region
and Image identifiers.

2.3.1 DOM

click Getting started

This matches an element in the DOM (Document Object Model) of the web page, matching either the id, name, class
attributes or the text of the element itself.

2.3.2 XPath

click //body/div[1]/nav/div/div[1]/a

This matches the XPath of an element in the web page.

It is a more explicit and powerful way of targeting web elements.

Note: You can use CSS selectors too in place of XPath, but XPath is preferred.

2.3.3 Point

click (200,500)

8 Chapter 2. Main concepts

TagUI, Release 6.110.0

This matches the point on the screen 200 pixels from the left of the screen and 500 pixels from the top of the screen.
This uses visual automation.

2.3.4 Region

read (300,400)-(500,550) to some-variable

This matches the rectangle formed between the two points (300,400) and (500,550). See Point. This uses visual
automation.

2.3.5 Image

click button.png

This matches any area on the screen that looks similar to an image file button.png (in the folder of the flow). You
first need to take a screenshot of button.png. This uses visual automation.

click image/button.png

This allows you to look for button.png within the image folder.

2.4 Live mode

We recommend using live mode when you want to write your own flows or try out some step. In Command
Prompt/Terminal:

tagui live

This starts up a live session, where you can run steps one line at a time and immediately see the output. Within a
TagUI flow, you can also use live step to pause execution and enter live mode.

2.5 If conditions

You may want your flow to do something different depending on some factors. You can use an if condition to do this.

For example, if the URL contains the word “success”, then we want to click some buttons:

if url() contains "success"
click button1.png
click button2.png

url() is a helper function that gets the url of the current webpage. Note that the other lines are indented, ie. there
are spaces (or tabs) in front of them. This means that they are in the if block. The steps in the if block will only be run
if the condition is met, ie. the url contains the word “success”.

Note: Before v6, you need to use { and } to surround your if block.

2.4. Live mode 9

TagUI, Release 6.110.0

From v6 onwards, the curly braces {} are optional.

Another common case is to check if some element exists. Here, we say that “if some-element doesn’t appear after
waiting for the timeout, then visit this webpage”.

if !exist('some-element')
https://tagui.readthedocs.io/

The ! negates the condition and comes from JavaScript, which TagUI code eventually translates to.

In below example, we check if a variable row_count, which we assigned a value earlier, is equal to 5:

if row_count equals to 5
some steps

Here’s how we check if it is more than or less than 5:

if row_count more than 5
some steps

if row_count less than 5
some steps

2.6 For loops

You can use loops to do the same thing many times within the same flow. In order to run one flow many times with
different variables, the standard way is to use datatables.

In this example, we repeat the steps within the block for a total of 20 times:

for n from 1 to 20
some step to take
some other step
some more step

2.7 Helper functions

Helper functions are useful JavaScript functions which can get values to use in your steps.

Each helper function is followed by brackets (). Some helper functions take inputs within these brackets. You can
see the full list of helper functions in the helper functions reference.

2.7.1 csv_row()

Turns some variables into csv text for writing to a csv file. It takes variables as its input, surrounded by square brackets
[] (which is actually a JavaScript array).

read name_element to name
read price_element to price
read details_element to details
write `csv_row([name, price, details])` to product_list.csv

10 Chapter 2. Main concepts

TagUI, Release 6.110.0

2.7.2 clipboard()

Gets text from the clipboard:

dclick pdf_document.png
wait 3 seconds
keyboard [ctrl]a
keyboard [ctrl]c
text_contents = clipboard()

You can also give it an input, which puts the input onto the clipboard instead. This can be useful for pasting large
amounts of text directly, which is faster than using the type step:

long_text = "This is a very long text which takes a long time to type"
clipboard(long_text)
click text_input
keyboard [ctrl]v
keyboard [enter]

2.7.3 mouse_x(), mouse_y()

Gets the mouse’s x or y coordinates.

This is useful for modifying x or y coordinates with numbers for using in steps like read and click. The example
below clicks 200 pixels to the right of element.png:

hover element.png
x = mouse_x() + 200
y = mouse_y()
click (`x`,`y`)

2.7.4 mouse_xy()

In live mode, you can use find out the coordinates of your mouse using echo `mouse_xy()` so that you can use
the coordinates in your flows:

echo `mouse_xy()`

2.7. Helper functions 11

TagUI, Release 6.110.0

12 Chapter 2. Main concepts

CHAPTER 3

Advanced concepts

3.1 Saving run results of flow

You can save an html log of the run and the flow run results to tagui/src/tagui_report.csv with the
-report option (shortcut -r).

tagui my_flow.tag -report

The CSV file will show one line for each run, when it started, how long it took to complete, any error message during
run, the link to the log file for that run, and the user’s workgroup\userid.

3.2 Handling exceptions and errors

There are 3 ways to handle exceptions in TagUI when things do not go as planned.

The first way is local error handling. This means using if conditions to check specifically for certain scenarios and
handling the scenarios accordingly. For example, check if some UI element is missing, then do xyz steps. Using this
way, a workflow can have multiple fine-grain exception handling.

The second way is workflow error handling. A workflow can be chained as follows to handle error or success
accordingly. The workflow error.tag will run only if flow.tag errors out. The workflow success.tag will run only if
flow.tag runs successfully. TagUI will automatically throw error when it detects an expected UI element missing (and
autosave screenshot) or some other unknown errors.

Windows example from the command prompt:

call tagui flow.tag || tagui error.tag
call tagui flow.tag && tagui success.tag

macOS / Linux example from the terminal:

tagui flow.tag || tagui error.tag
tagui flow.tag && tagui success.tag

13

TagUI, Release 6.110.0

The third way is global error handling. Configuration can be done for TagUI such that after every run, special
handling is done to send data or files generated from the report option to some target folder or API endpoint for error
/ success handling. For example, syncing all automation runs to central storage for auditing purpose. The special
handling applies to all TagUI flows that are run.

3.3 Datatables for batch automation

Datatables are csv files which can be used to run your flows multiple times with different inputs.

A datatable (trade_data.csv) could look like this:

trade username password pair size direction
1 Trade USDSGD test_account 12345678 USDSGD 10000 BUY
2 Trade USDSGD test_account 12345678 USDJPY 1000 SELL
3 Trade EURUSD test_account 12345678 EURUSD 100000 BUY

To use it, you run your flow with tagui my_flow.tag trade_data.csv. TagUI will run my_flow.tag
once for each row in the datatable (except for the header).

Within the flow, TagUI can use the variables trade, username, password, etc as if they were in the local object
repository and the values will be from that run’s row.

To know which iteration your flow is in you can use the iteration variable:

echo current iteration: `iteration`
if iteration equals to 1

// go to login URL and do the login steps
www.xero.com

// do rest of the steps for every iteration

3.4 Object repositories for reusability

Object repositories are optional csv files which can store variables for use in flows. They help to separate your flows
from your personal data (like login information for web flows), and allow you to share common information between
multiple flows for easy updating.

Each flow has a local object repository and all flows share the global object repository. The local object repository
is the tagui_local.csv in the same folder as the flow. The global object repository is the tagui_global.csv
in the tagui/src/ folder.

An object repository could look like this:

object definition
email user-email-textbox
create account btn btn–green btn-xl signup-btn

Within the flow, TagUI can use the objects email, create account as variables and they will be replaced directly
by the definitions before it is run. Local definitions take precedence over global definitions.

If user-email-textbox was the identifier for some web text input, then you could use the following in your flow:

14 Chapter 3. Advanced concepts

TagUI, Release 6.110.0

type `email` as my_email@email.com

3.5 Running flows within a flow

You can modularise your RPA workflows by breaking a large workflow file into many subflow files. For more complex
RPA scenarios, you can even let a subflow run other subflows.

Some common reasons for doing that include the convenience of reusing the same subflow in other flows, doing
something specific which is easier to organise by keeping the sequence of steps in a subflow, or storing your Python
or JavaScript code and functions in separate subflows (using py begin and py finish code blocks for example).

A flow can run another flow, like this:

tagui login_crm.tag

Flows can also be stored in subfolders:

// Windows example
tagui CRM\login.tag

// Mac/Linux example
tagui CRM/login.tag

Variables in the parent flow are accessible in the child flow and vice versa:

// in this case, username and password variables are available in login.tag
username = 'jennifer'; password = '12345678';
tagui login.tag

// you can also define variables on separate lines instead of all in 1 line
username = 'jennifer'
password = '12345678'
tagui login.tag

// in login.tag you can define and return variables for its parent to use
echo `login_result`

You can even combine multiple sequences of steps into one subflow as follows. By designing a subflow this way, you
can assign the variable action = 'login' in the parent flow to determine which sequence of steps gets executed
when the subflow is called with tagui step:

// crm_steps.tag
if action equals to 'login'

do some steps
do some more steps

else if action equals to 'report'
do some steps
do some more steps

else if action equals to 'logout'
do some steps
do some more steps

(continues on next page)

3.5. Running flows within a flow 15

TagUI, Release 6.110.0

(continued from previous page)

else
echo ERROR - action undefined

3.6 Turbo mode to run 10X faster

To run TagUI with turbo option (use with caution):

tagui flow.tag -turbo

or

tagui flow.tag -t

Most websites and desktop apps are not designed for the super-human speed user. If your RPA runs at a speed beyond
what those websites are designed and tested for, you are surely going to run into problems with some apps. Problems
could be fields and data not filling up properly, not triggering expected validations, form submissions with missing
data, account being blocked etc.

And the problems might happen randomly, including working on your PC but not working on another PC due to
difference in CPU speed. Because of this, using turbo mode option is not recommended. You may save some cheap
computer time, but if something is broken or does not work, you may end up spending expensive human time (your
time) to troubleshoot or fix.

However, this is very useful for some users for some specific scenarios. For eg, data collection from apps, data entry
in web applications that can handle super-human speed reliably, as part of a chatbot doing backend RPA for user, for
fast and rapid prototyping, perhaps taking part in RPA competitions and hackathons etc. Thoroughly test for your use
case before using!

3.7 Visual automation tricks

For many steps, you can end the step with using ocr or using OCR to tell TagUI to interact on some UI element
on the screen using OCR (optical character recognition). See the examples below. Steps which this can be done: click,
rclick, dclick, hover, type, select, read, snap, exist(), present().

click Submit using ocr

if exist('Special Offer using ocr')
click Add To Cart using OCR

// various usage combinations for select step
select Dress Color using OCR as Dark Blue using OCR
select dress_color.png as Bright Pink using ocr
select Dress Color using OCR as dark_black.png
select dress_color.png as bright_white.png

If you make the background of a UI element in a .png file 100% transparent using an image editor, TagUI will be
able to target the element regardless of its background.

Conversely, you can also remove the foreground content near some anchor element like a frame, to allow you to OCR
varying content in the empty area using the read step.

16 Chapter 3. Advanced concepts

TagUI, Release 6.110.0

3.8 Writing Python within flows

You can write Python code in TagUI flows. Python needs to be installed separately.

The py step can be used to run commands in Python (TagUI will call python on the command line). You can pass
string values back to TagUI with print(). The stdout will be stored in the py_result variable in TagUI.

py a=1
py b=2
py c=a+b
py print(c)
echo `py_result`

You can also use py begin and py finish before and after a Python code block:

py begin
a=1
b=2
c=a+b
print(c)
py finish
echo `py_result`

You can pass a variable to Python like this:

phone = 1234567
py_step('phone = ' + phone)
py print(phone)
echo `py_result`

name = 'Donald'
py_step('name = "' + name + '"')
py print(name)
echo `py_result`

To pass and return more complex data, for example multiple variables, you can use JavaScript and Python JSON
libraries to send and receive back JSON strings. See an example here of passing 2 variables, doing some processing,
and returning 2 variables.

3.9 Create log files for debugging

To do advanced debugging, you can create log files when running flows by creating an empty tagui_logging file
in tagui/src/.

• my_flow.log stores step-by-step output of the execution.

• my_flow.js is the generated JavaScript file that was run.

• my_flow.raw is the expanded flow after parsing modules.

3.10 Running TagUI on the cloud

For cloud lovers, you can run TagUI on your web browser or phone using free Google Cloud. You can run up to 5
sessions concurrently on different tabs of your browser.

3.8. Writing Python within flows 17

https://www.python.org/downloads/
https://github.com/kelaberetiv/TagUI/issues/898#issuecomment-752833953
https://github.com/kelaberetiv/TagUI/issues/913

TagUI, Release 6.110.0

For more control running on the cloud, you can run this Docker image (use edge tag for the latest version) or Docker
file on your preferred cloud vendor.

Or run on free Node-RED instance on OpenFlow. The Docker image, Docker file and OpenFlow cloud are maintained
and sponsored by Allan Zimmermann.

18 Chapter 3. Advanced concepts

https://hub.docker.com/r/openiap/nodered-tagui
https://github.com/open-rpa/openflow/blob/master/OpenFlowNodeRED/Dockerfiletagui
https://github.com/open-rpa/openflow/blob/master/OpenFlowNodeRED/Dockerfiletagui
https://app.openiap.io/
https://www.linkedin.com/in/skadefro/

CHAPTER 4

Reference

Use this section to look up information on steps, helper functions and run options you can use. You can explore using
the navigation headers.

4.1 Steps

The steps you can use in TagUI are listed here.

4.1.1 Mouse and keyboard

click

Left clicks on the identifier.
Can use DOM, XPath, Point, Image identifiers.

click [DOM/XPath/Point/Image]

Examples

click Main concepts
click //nav/div/div[2]/ul/li[4]/ul/li[1]/a
click (500,200)
click button.png

rclick

Right clicks on the identifier.
Can use DOM, XPath, Point, Image identifiers.

19

TagUI, Release 6.110.0

rclick [DOM/XPath/Point/Image]

See click for examples.

dclick

Double left clicks on the identifier.
Can use DOM, XPath, Point, Image identifiers.

dclick [DOM/XPath/Point/Image]

See click for examples.

hover

Moves mouse cursor to the identifier.
Can use DOM, XPath, Point, Image identifiers.

hover [DOM/XPath/Point/Image]

See click for examples.

type

Types into a web input. You can use [clear] to clear the field and [enter] to hit the Enter key.
Can use DOM, XPath, Point, Image identifiers.

type [DOM/XPath/Point/Image] as [text to type]

Examples

type search-term as John Wick
type //input[@name="search"] as John Wick
type (500,200) as John Wick
type input_field.png as John Wick

type search-term as [clear]John Wick[enter]
type //input[@name="search"] as [clear]John Wick[enter]
type (500,200) as [clear]John Wick[enter]
type input_field.png as [clear]John Wick[enter]

keyboard

Enters keystrokes directly.

keyboard [keys]

20 Chapter 4. Reference

TagUI, Release 6.110.0

You can use the following special keys:

• [shift] [ctrl] [alt] [win] [cmd] [enter]

• [space] [tab] [esc] [backspace] [delete] [clear]

• [up] [down] [left] [right] [pageup] [pagedown]

• [home] [end] [insert] [f1] .. [f15]

• [printscreen] [scrolllock] [pause] [capslock] [numlock]

Examples

keyboard [win]run[enter]
keyboard [printscreen]
keyboard [ctrl]c
keyboard [tab][tab][tab][enter]

keyboard [cmd][space]
keyboard safari[enter]
keyboard [cmd]c

mouse

Explicitly sends a mouse event at the current mouse position.
In most cases, you want you use click instead.

mouse down
mouse up

4.1.2 Web

visit

Visits the provided URL.

[URL]

Examples

https://google.com

select

Selects a dropdown option in a web input.
Can use DOM, XPath identifiers.

select [DOM/XPath of select input element] as [option value or text]

Examples

4.1. Steps 21

TagUI, Release 6.110.0

select variant as blue

table

Saves table data to a csv file, base on the table number on webpage or its XPath identifier.

table [table number] to [filename.csv]
table [XPath] to [filename.csv]

Examples

table 1 to regional_exchange_rates.csv
table (//table)[2] to global_exchange_rates.csv
table //table[@name='report'] to report.csv

popup

Modifies the next steps to be run in a new tab.

popup [unique part of new tab's URL]
[steps]

Examples

popup confirm
click Confirm

frame

Modifies the next steps to use the DOM or XPath in a frame or subframe.

frame [frame name]
[steps]

frame [frame name] | [subframe name]
[steps]

Examples

frame navigation
click Products

frame main | register
click Register

download to

Specifies a location to store file downloads. The default location is the folder of the TagUI flow.

22 Chapter 4. Reference

TagUI, Release 6.110.0

download to [folder location]

upload

Uploads file to a website.
Only DOM identifier can be used.

upload [DOM of upload element] as [filename]

Examples

upload #element_id as report.csv

api

Call a web API and save the raw response to the variable api_result.

If the response is in JSON, api_json will automatically be created.

api https://some-api-url

Examples

api https://api.github.com/repos/kelaberetiv/TagUI/releases
echo `api_result`
author = api_json[0].author.login

For an advanced example of using api step, setting POST/GET method, header and body, see this example from aito.ai
- a web-based machine learning solution for no-coders and RPA developers. In the example, api step is used to
make a machine-learning inference to generate the account code of an invoice item, based on its description and price.
aito.ai’s free tier comes with 2000 API calls/month and it works perfectly with TagUI.

4.1.3 Excel

Perform read, write, copy, delete actions on Excel files using standard Excel formula like this one
[workbook]sheet!range. This feature works with both Windows and Mac Excel apps. See this link for
notes of passed test cases and known limitations for this feature. To access a password-protected Excel file, use
excel_password = 'password'.

variables

You can use variables in your Excel formula, for eg range or sheet. Various Excel file formats are supported, be
sure to put the file’s .extension as part of the formula so that TagUI can recognise that the instruction is an Excel step
instead of some JavaScript code.

[`workbook`.xlsx]`sheet`!`range` = 123
data = [`workbook`.xlsx]`sheet`!`range`

4.1. Steps 23

https://aito.document360.io/docs/tagui
https://github.com/kelaberetiv/TagUI/issues/1081#issuecomment-902058917

TagUI, Release 6.110.0

visibility

By default, the Excel app will be opened and run in the background. If you want the automated actions on Excel to
be in focus in foreground, you can set it with excel_focus = true in your workflow. Use excel_focus =
false to set it off again in your workflow.

For some usage scenarios, you might not even want the Excel app to be visible in the background. In that case, you
can set excel_visible = false in your workflow to run Excel invisibly. Use excel_visible = true to
make Excel visible again in your RPA workflow.

read

Read data from Excel files. Both relative and absolute file paths supported. Error will be shown if the specified file or
sheet does not exist. In below line, range can be a cell or range in Excel.

variable = [workbook]sheet!range

Reading columns and rows can be done using standard Excel formula for range, for example A:A (column A), B:D
(columns B to D), 2:2 (row 2), 3:5 (rows 3 to 5). There is no standard Excel formula for selecting the entire range of a
sheet, so you will have to provide the actual range required.

Examples

top_profit = [Monthly Report.xlsx]August!E10
top_salesman = [Monthly Report.xlsx]August!E11
data_array = [Quarterly Metrics.xlsx]Main!B3:G100
data_array = [C:\Reports\June.xls]Sheet1!A1:C2

data_array = [C:\Reports\June.xls]Sheet1!A:A
data_array = [C:\Reports\June.xls]Sheet1!B:D
data_array = [C:\Reports\June.xls]Sheet1!2:2
data_array = [C:\Reports\June.xls]Sheet1!3:5

TagUI’s backend language is JavaScript, thus data_array can be used just like a JavaScript array.

// to work on data in data_array cell by cell
for row from 0 to data_array.length-1

for col from 0 to data_array[row].length-1
echo `data_array[row][col]`

Note - There was a limitation on reading multiple rows and columns, for eg B:D and 3:5 (data array returned will be
a 1 x N array instead of the correct row x column array). This is now fixed in v6.87. Get your copy with tagui
update command or from MS Word Plug-in Update TagUI button.

write

Write data to Excel files. Both relative and absolute file paths supported. If the specified file does not exist, a new file
will be created. If the sheet does not exist, a new sheet will be created. If the data is an array, the given cell will be
used as the top-left cell to write the range of cells.

[workbook]sheet!cell = variable

Examples

24 Chapter 4. Reference

TagUI, Release 6.110.0

[Monthly Report.xlsx]August!E10 = 12345
[Monthly Report.xlsx]August!E11 = "Alan"
[Monthly Report.xlsx]August!E12 = variable
[Quarterly Metrics.xlsx]Main!B3 = data_array

TagUI’s backend language is JavaScript, thus range data can be defined just like a JavaScript array.

// to assign a set of range data with 2 rows of 3 columns
[C:\Reports\June.xls]Sheet1!A1 = [[1, 2, 3], [4, 5, 6]]
[C:\Reports\June.xls]Sheet1!A1 = [[variable_1, variable_2, variable_3], [4, 5, 6]]

// example spreadsheet data with #, name and country
[Participants.xlsx]Sheet1!A1 = [['1', 'John', 'USA'], [2, 'Jenny', 'Russia'], [3,
→˓'Javier', 'Serbia']]

// get the next row count for the example spreadsheet
column_A = [Participants.xlsx]Sheet1!A:A
next_row = column_A.length + 1

// write a new row accordingly to example spreadsheet
[Participants.xlsx]Sheet1!A`next_row` = [[next_row, 'Janice', 'Brazil']]

copy

Copy data across Excel files. Both relative and absolute file paths supported. Error will be shown if the specified
source file or sheet does not exist. If the specified destination file does not exist, a new file will be created. If the
destination sheet does not exist, a new sheet will be created. If the data is an array, the given cell will be used as the
top-left cell to write the range of cells.

[workbook]sheet!cell = [workbook]sheet!range

Examples

[Monthly Report.xlsx]August!A1 = [Jennifer Report.xlsx]August!A1
[Monthly Report.xlsx]August!A1 = [Jennifer Report.xlsx]August!A1:E200

delete

Delete data in Excel files. Both relative and absolute file paths supported. Error will be shown if the specified file or
sheet does not exist. Delete a range of cells by assigning an empty array to it.

[workbook]sheet!cell = ""

Examples

[Monthly Report.xlsx]August!E10 = ""
[Quarterly Metrics.xlsx]Main!A1 = [["", "", ""], ["", "", ""]]

4.1.4 Word

You can read the text contents of a Microsoft Word document simply by assigning its filename to a variable as follows.
TagUI will automate Microsoft Word to copy out the text contents and assign to the variable. Note that you need to
have Microsoft Word installed on your computer. This feature works for both Windows and Mac.

4.1. Steps 25

TagUI, Release 6.110.0

Examples for Windows

word_text = [Research Report.docx]
word_text = [C:\Users\Jennifer\Desktop\Report.docx]
word_text = [FY2021 Reports\Research Report.docx]

filename = 'C:\\Users\\Jennifer\\Desktop\\Report'
word_text = [`filename`.docx]
filename = 'Research Report'
word_text = [`filename`.docx]

Examples for Mac

word_text = [Research Report.docx]
word_text = [/Users/jennifer/Desktop/Report.docx]
word_text = [FY2021 Reports/Research Report.docx]

filename = '/Users/jennifer/Desktop/Report'
word_text = [`filename`.docx]
filename = 'Research Report'
word_text = [`filename`.docx]

After reading the text content into a variable, you can process it using TagUI’s helper functions such as get_text() and
del_chars() to retrieve specific information required for your RPA scenario. Standard JavaScript functions can also
be used to do string processing, for more information google javascript how to xxxx. After reading the text
content from a Word document, TagUI will close Microsoft Word and continue with the rest of the automation steps.

4.1.5 PDF

You can read the text contents of a PDF file simply by assigning its filename to a variable as follows. TagUI will
automate the PDF viewer app to copy out the text contents and assign to the variable. On Windows, you will need the
free Adobe Acrobat Reader and set it as your default PDF viewer. On Mac, TagUI will use the default Preview app
that can already view PDF files.

Examples for Windows

pdf_text = [Research Report.pdf]
pdf_text = [C:\Users\Jennifer\Desktop\Report.pdf]
pdf_text = [FY2021 Reports\Research Report.pdf]

filename = 'C:\\Users\\Jennifer\\Desktop\\Report'
pdf_text = [`filename`.pdf]
filename = 'Research Report'
pdf_text = [`filename`.pdf]

Examples for Mac

pdf_text = [Research Report.pdf]
pdf_text = [/Users/jennifer/Desktop/Report.pdf]
pdf_text = [FY2021 Reports/Research Report.pdf]

filename = '/Users/jennifer/Desktop/Report'
pdf_text = [`filename`.pdf]
filename = 'Research Report'
pdf_text = [`filename`.pdf]

26 Chapter 4. Reference

https://get.adobe.com/reader/

TagUI, Release 6.110.0

After reading the text content into a variable, you can process it using TagUI’s helper functions such as get_text() and
del_chars() to retrieve specific information required for your RPA scenario. Standard JavaScript functions can also
be used to do string processing, for more information google javascript how to xxxx. After reading the text
content from a PDF file, TagUI will close the PDF viewer and continue with the rest of the automation steps.

4.1.6 Using variables

read

Gets some text or value and stores it in a variable.
Can use DOM, XPath, Region, Image identifiers.

read [DOM/XPath/Region/Image] to [variable]

When you provide a Region or Image identifier, TagUI uses OCR (Optical Character Recognition) to read the charac-
ters from the screen.

Examples

read //p[@id="address"] to address

read //p[@id="address"]/@class to address-class

read (500,200)-(600,400) to id-number

read frame.png to email

assign

Saves text to a variable.

[variable] = [value]

When using text in the value, surround the text in quotes, like “some text”. This is actually treated by TagUI as
JavaScript, so you can assign numbers to variables or use other JavaScript functions. The variable name needs to be a
single word and cannot start with a number, and it is case sensitive.

Examples

count = 5
username = "johncleese"
fullname = firstname + lastname

access

To access the value of a variable in most steps, surround the variable in backticks, like ‘‘ my_variable ‘‘. The
following is an example of accessing a variable in the echo step.

4.1. Steps 27

TagUI, Release 6.110.0

Examples

my_variable = "hello world"
echo `my_variable`
// output: hello world

However, in certain steps like if conditions, for loops and helper functions, the variable can be accessed directly
without backticks. For more information, see docs for the relevant step.

Examples

a = "hello"
b = "world"
if a equals to b

echo same
// output:

my_variable = 3
for n from 1 to my_variable

echo `n`
// output: 1
// 2
// 3

my_variable = "some text to copy"
clipboard(my_variable)

concatenation

To concatenate variables, the syntax varies depending on whether you are doing so within a step. The following
examples show the difference between concatenating variables within and outside the echo step.

Examples

echo `a` `b`
// output: hello world

a = "hello"
b = "world"
c = a + " " + b
echo `c`
// output: hello world

4.1.7 File saving/loading

dump

Saves text to a new file.

dump [text] to [filename]
dump [`variable`] to [filename]

28 Chapter 4. Reference

https://tagui.readthedocs.io/en/latest/main_concepts.html#if-conditions
https://tagui.readthedocs.io/en/latest/main_concepts.html#for-loops
https://tagui.readthedocs.io/en/latest/main_concepts.html#helper-functions

TagUI, Release 6.110.0

// creates blank CSV file with header
dump First Name,Last Name to names.csv

write

Saves a new line of text to an existing file.

write [text] to [filename]
write [`variable`] to [filename]

Examples

write firstname,lastname to names.csv
write `fullreport` to report.txt

load

Loads file content to a variable.

load [filename] to [variable]

Examples

load report.txt to report

snap

Saves a screenshot of the whole page, an element or a region.
Can use DOM, XPath, Region, Image identifiers.

snap [DOM/XPath/Region/Image/page] to [filename]

If you use page as the identifier, it takes a screenshot of the whole webpage.

Examples

snap logo to logo.png

snap page to webpage.png

snap (0,0)-(100,100) to image.png

4.1.8 Showing output

echo

Shows some output on the command line.

echo [text]
echo [`variable`]

4.1. Steps 29

TagUI, Release 6.110.0

Examples

echo Flow has started
echo The user is `username`

show

Shows element text directly on the command line.
Can use DOM, XPath identifiers.

show [DOM/XPath]

Examples

show review-text

check

Shows some output on the command line based on a condition.

check [condition] | [text if true] | [text if false]

Examples

check header_home_text equals to "Home" | "header text is correct" | "header text is
→˓wrong"

4.1.9 Custom code

js

Runs JavaScript code explicitly. TagUI has direct access to the JavaScript variables.

js [JavaScript statement]

js begin
[JavaScript statements]
js finish

Examples

js obj = JSON.parse(api_result)
dump `obj` to result.json

js begin
obj = JSON.parse(api_result)
randomInteger = Math.floor(Math.random() * Math.floor(5)) + 1
js finish
dump `obj` to result.json

// declare and initilise variable to use it inside/outside js code block

(continues on next page)

30 Chapter 4. Reference

TagUI, Release 6.110.0

(continued from previous page)

a = ""
js begin
a = "some string"
js finish
echo `a`

py

Runs Python code and saves the stdout to the variable py_result as a string.

py [Python statement]

py begin
[Python statements]
py finish

Examples

py result = 2 + 3
py print(result)
echo `py_result`

py begin
import random
random_integer = random.randint(1,6)
print(random_integer)
py finish
echo `py_result`

See this link for more examples and usage patterns on running Python code.

run

Runs a command in Command Prompt or Terminal and saves the stdout to the variable run_result.

run [shell command]

Examples

run cmd /c mkdir new_directory

vision

Runs Sikuli code.

vision [Sikuli statement]

vision begin
[Sikuli statements]
vision finish

Examples

4.1. Steps 31

TagUI, Release 6.110.0

vision click("button1.png")

dom

Runs code in the browser dom and saves returned value to the variable dom_result.

dom [JavaScript statement to run in the DOM]

dom begin
[JavaScript statements to run in the DOM]
dom finish

Examples

// goes back to previous page
dom window.history.back()

// returns text of an element
dom return document.querySelector('#some_id').textContent

r

Runs R statements and saves the stdout to the variable r_result.

r [R statement]

r begin
[R statements]
r finish

4.1.10 Miscellaneous

wait

Explicitly wait for some time.

wait [seconds to wait]
wait [seconds to wait] s
wait [seconds to wait] seconds

Examples

wait 5.5
wait 10 s
wait 20 seconds

timeout

Changes the auto-wait timeout when waiting for web elements to appear (default 10 seconds).

32 Chapter 4. Reference

TagUI, Release 6.110.0

timeout [seconds to wait before timeout]

Examples

timeout 300

ask

Prompts user for input and saves the input as the variable ask_result.

ask [prompt]

Examples

ask What is the date of the receipt? (in DD-MM-YYYY)
type search as `ask_result`

live

Run steps interactively and immediately see the output. The user must enter “done” before the flow continues.

live

tagui

Runs another TagUI flow. Checks the flow’s folder.

tagui [flow file]
tagui [folder/flow file]

Examples

tagui update-forex.tag
tagui flows/update-forex.tag

comment

Adds a comment. If you are inside a code block, for example an if condition or for loop, be sure to indent your
comment accordingly to let TagUI run correctly after it converts into JavaScript code.

// [comment]

Examples

// updates the forex rates

4.1. Steps 33

TagUI, Release 6.110.0

telegram

Sends a Telegram notification, for example, to update on automation completion or exception.

First, message @taguibot to authorise it to send messages to your Telegram. Then in TagUI:

telegram [id] [message]

Examples

// this line sends message to Telegram user with ID 1234567890, \n means a new line
telegram 1234567890 Hello Alena,\n\nYour HR onboarding bot has completed successfully.

// show telegram_result variable - 'success' means sent, 'fail' means sending failed
echo Telegram message - `telegram_result`

// if condition to check telegram_result 'success' or 'fail' and handle accordingly
if telegram_result equals to 'success'

echo Message sent successfully.
else

echo Message sending failed.

Note that the telegram step requires an internet connection. This feature is being hosted at https://tebel.org, but the
source code is on GitHub if you wish to host this feature on your own cloud or server. The implementation is in pure
PHP without any dependencies.

The only info logged is chat_id, length of the message, datetime stamp (to prevent abuse). If you wish to host on your
own, first read through this link to learn more about Telegram Bot API, creating your bot API token and setting up the
webhook - https://core.telegram.org/bots

4.2 Run options

You can use the below options when running tagui.

For example, the command below runs my_flow.tag without showing the web browser, while storing the flow run
result in tagui_report.csv.

tagui my_flow.tag -headless -report

4.2.1 -deploy or -d

Deploys a flow, creating a shortcut which can be double-clicked to run the flow. If the flow file is moved, a new
shortcut must be created. The flow will be run with all the options used when creating the shortcut.

4.2.2 -headless or -h

Runs the flow with an invisible Chrome web browser (does not work for visual automation).

4.2.3 -nobrowser or -n

Runs without any web browser, for example to perform automation only with visual automation.

34 Chapter 4. Reference

https://t.me/taguibot
https://tebel.org
https://github.com/kelaberetiv/TagUI/tree/master/src/telegram
https://core.telegram.org/bots

TagUI, Release 6.110.0

4.2.4 -report or -r

Tracks flow run result in tagui/src/tagui_report.csv and saves html logs of flows execution.

4.2.5 -turbo or -t

Run automation at 10X the speed of normal human user. Read caveats at Advanced concepts!

4.2.6 -quiet or -q

Runs without output to command prompt except for explicit output (echo, show, check steps and errors etc). To
have fine-grained control on showing and hiding output during execution (eg hiding password from showing up), use
quiet_mode = true and quiet_mode = false in your flow.

4.2.7 -edge or -e

Runs using Microsoft Edge browser instead of Chrome (can be used with -headless option).

4.2.8 my_datatable.csv

Uses the specified csv file as the datatable for batch automation. See datatables.

4.2.9 input(s)

Add your own parameter(s) to be used in your automation flow as variables p1 to p8.

For example, from the command prompt, below line runs register_attendence.tagworkflow using Microsoft
Edge browser and with various student names as inputs.

tagui register_attendence.tag -edge Jenny Jason John Joanne

Inside the workflow, the variables p1, p2, p3, p4 will be available for use as part of the automation, for example to fill
up student names into a web form for recording attendence. The following lines in the workflow will output various
student names given as inputs.

echo `p1`
echo `p2`
echo `p3`
echo `p4`

See other deprecated options.

4.3 Helper functions

4.3.1 csv_row()

Formats an array for writing to csv file.

Examples

4.3. Helper functions 35

TagUI, Release 6.110.0

read name_element to name
read price_element to price
read details_element to details
write `csv_row([name, price, details])` to product_list.csv

4.3.2 count()

Gets the number of elements matching the identifier specified. Note that the identifier needs to be in single quotes ''.

Examples

rows = count('table-rows')

4.3.3 clipboard()

Puts text onto the clipboard, or gets the clipboard text (if no input is given).

Examples

clipboard('some text')
keyboard [ctrl]v

keyboard [ctrl]c
contents = clipboard()

4.3.4 url()

Gets the URL of the current web page.

Examples

if url() contains 'success'
click button1

4.3.5 title()

Gets the title of the current web page.

Examples

if title() contains 'Confirmation'
click button1

4.3.6 text()

Gets all text content of the current web page.

Examples

if text() contains 'success'
click button1

36 Chapter 4. Reference

TagUI, Release 6.110.0

4.3.7 timer()

Gets the time elapsed in seconds in between each running of this function.

Examples

timer()
click button1
click button2
click button3
echo `timer()`

4.3.8 exist()

Waits until the timeout for an element to exist and returns a JavaScript true or false depending on whether it
exists or not.
Note that the identifier is surrounded by quotes.
Can use DOM, XPath, Image identifiers.

exist('[DOM/XPath/Image]')

Examples

if exist('//table')
click button1

4.3.9 present()

Same as exist() except that it does not wait until the timeout and immediately returns true or false.
Note that the identifier is surrounded by quotes.
Can use DOM, XPath, Image identifiers.

Examples

if present('//table')
click button1

4.3.10 mouse_xy()

Gets the x, y coordinates of the current mouse position.
Particularly useful in live mode.

Examples

echo `mouse_xy()`

4.3. Helper functions 37

TagUI, Release 6.110.0

4.3.11 mouse_x()

Gets the x coordinate of the current mouse position as a number, eg 200.

Examples

hover element.png
x = mouse_x() + 200
y = mouse_y()
click (`x`,`y`)

4.3.12 mouse_y()

Gets the y coordinate of the current mouse position as a number, eg 200.

Examples

hover element.png
x = mouse_x() + 200
y = mouse_y()
click (`x`,`y`)

4.3.13 get_files()

Returns an array of files and folders in a given folder. Both relative and absolute paths supported.

Examples

// list of files in the same folder as the flow file
list = get_files('.')

// list of files in the Desktop folder of user Alan
// note double backslash because of JavaScript string
list = get_files('C:\\Users\\Alan\\Desktop')

// alternatively, use single forward slash instead
list = get_files('C:/Users/Alan/Desktop')

// showing the list of files after retrieving it
// JavaScript array start from 0 for 1st element
for n from 0 to list.length-1

echo `list[n]`

// checking to process a specific file extension
for n from 0 to list.length-1

if list[n] contains '.XLSX'
echo `list[n]`

4.3.14 get_text()

Extracts text between 2 provided anchors from given text. Optional 4th parameter for occurrence during multiple
matches (for example 3 to tell the function to return the 3rd match found).

Examples

38 Chapter 4. Reference

TagUI, Release 6.110.0

pdf_text = 'Name: John State: Texas City: Plano Contact: ...'

name = get_text(pdf_text, 'Name:', 'State:')
state = get_text(pdf_text, 'State:', 'City:')
city = get_text(pdf_text, 'City:', 'Contact:')

echo `name`, `state`, `city`

4.3.15 del_chars()

Cleans data by removing provided character(s) from given text and returning the result.

Examples

pdf_text = 'Name: John\n State: Texas\t City: Plano\n Contact: ...'
echo `del_chars(pdf_text, '\n\t:')`

4.3.16 get_env()

Returns the value of given environment variable from the operating system.

Examples

// getting %USERPROFILE% variable for Windows
echo `get_env('USERPROFILE')`
home_dir = get_env('USERPROFILE')

// getting $HOME variable for Mac or Linux
echo `get_env('HOME')`
home_dir = get_env('HOME')

4.3. Helper functions 39

TagUI, Release 6.110.0

40 Chapter 4. Reference

CHAPTER 5

Tools

These are separate apps which help you in writing TagUI flows.

5.1 TagUI Chrome Extension

The TagUI Chrome extension (download) helps you write web flows.

It records steps such as page navigation, clicking of web elements and entering information. It then displays the steps
for you to paste into your flow.

5.1.1 Usage

1. Go to the website URL you want to start the automation at.

2. Click the TagUI icon, then Start.

3. Carry out the steps you want to automate, or right click on elements to record other steps.

4. Click the TagUI icon, then Stop.

5. Click Export to view the generated TagUI steps.

The recording isn’t foolproof (for example, the underlying recording engine cannot capture frames, popup windows
or tab key input). It’s meant to simplify flow creation with some edits, instead of typing everything manually.

See this video for an example of recording a sequence of steps, editing for adjustments and playing back the automa-
tion.

5.2 TagUI Writer, Screenshoter & Editor

TagUI Writer is a Windows app helps write TagUI flows. When pressing Ctrl + Left-click, a popup menu appears with
the list of TagUI steps for you to paste into your text editor.

41

https://chrome.google.com/webstore/detail/tagui-rpa-web-recorder/gjdajlcpkkjgjjokkekiniengajiamnk/
https://www.youtube.com/watch?v=bFvsc4a8hWQ

TagUI, Release 6.110.0

TagUI Screenshoter app helps in capturing screenshots for TagUI visual automation.

TagUI Editor allows you to edit and run TagUI scripts via AutoHotKey.

Download these here.. These third-party tools are created by Arnaud Degardin @adegard.

5.3 RPA for Python (for Python users)

RPA for Python is a Python package (pip install rpa to install) which allows you to use TagUI through a
Python API. Check out the documentation. It is based on a fork of TagUI optimised for use by the Python package.
Created and maintained by TagUI’s creator Ken Soh @kensoh.

42 Chapter 5. Tools

https://github.com/adegard/tagui_scripts
https://github.com/adegard
https://github.com/tebelorg/RPA-Python
https://github.com/kensoh

CHAPTER 6

Frequently Asked Questions

6.1 How is TagUI licensed?

TagUI is a free, open-source, cross-platform software released under the Apache 2.0 license.

6.2 How do I find the XPath of a web element?

In Chrome/Edge, right-click on the element, click Inspect, right-click on the highlighted HTML, then:

43

TagUI, Release 6.110.0

For some web pages, the XPath of an element can change. To combat this, you can find a stable element in the web
page and writing a custom XPath relative to that stable element.

XPath is very powerful and can allow you to select web elements in many ways. Learn more about XPath at
W3Schools. Alternatively, check out SelectorsHub Chrome extension tool.

6.3 How do I find the id, name, class or other attributes of a web
element?

In Chrome/Edge, right-click on the element, click Inspect. There will be some highlighted HTML, like this:

This highlighted element has a class attribute of “chat-line__body”. It doesn’t have any id or name attribute

6.4 How do I use the Command Prompt?

Hold the Windows key and press R. Then type cmd and press Enter to enter the Command Prompt.

From here, you can run a command by typing it and pressing Enter.

6.5 How do I use the Terminal?

Hold Command and press spacebar, then type terminal and press Enter.

From here, you can run a command by typing it and pressing Enter.

6.6 What are csv files?

CSV files are files which stores data in a table form. They can be opened with Microsoft Excel and Google Sheets.
Each line is a row of values. The values are split into different columns by commas ,, which is why CSV stands for
Comma Separated Values.

6.7 Running flows on a fixed schedule

It is often useful to run flows automatically on a fixed schedule: monthly, weekly, daily or even every 5 minutes.

On Windows, use the Task Scheduler.

44 Chapter 6. Frequently Asked Questions

https://www.w3schools.com/xml/xpath_intro.asp
https://chrome.google.com/webstore/detail/selectorshub/ndgimibanhlabgdgjcpbbndiehljcpfh?hl=en
https://www.digitalcitizen.life/how-create-task-basic-task-wizard

TagUI, Release 6.110.0

On macOS / Linux, use crontab command.

6.8 How do I kill any unfinished TagUI processes?

If you Ctrl+C to break a TagUI automation, you can use tagui/src/end_processes (for macOS / Linux) or
end_processes.cmd (for Windows) to kill any dead processes of TagUI integrations (Chrome, Edge, SikuliX,
Python etc).

6.9 Why doesn’t TagUI work on zoom levels other than 100%?

TagUI mimics the user mouse-clicks at the (x,y) coordinates of web elements, so using a different zoom level for your
web browser will cause clicks to be triggered at wrong coordinates. Make sure TagUI’s Chrome/Edge browser is set
to 100% zoom for best results.

6.10 Is TagUI safe and secure to use?

As TagUI and the foundation it’s built on is open-source software, it means users can read the source code of TagUI
and all its dependencies to check if there is a security flaw or malicious code. This is an advantage compared to using
commercial software that is closed-source, as users cannot see what is the code behind the software.

Following are links to the source code for TagUI and its open-source dependencies. You can dig through the source
code for the other open-source dependencies below, or make the fair assumption that security issues would have been
spotted by users and fixed, as these projects are mature and have large user bases.

• TagUI - https://github.com/kelaberetiv/TagUI

• SikuliX - https://github.com/RaiMan/SikuliX1

• CasperJS - https://github.com/casperjs/casperjs

• PhantomJS - https://github.com/ariya/phantomjs

• SlimerJS - https://github.com/laurentj/slimerjs

• Python - https://github.com/python/cpython

• R - https://github.com/wch/r-source

• PHP - https://github.com/php/php-src

See this section on why TagUI has enterprise security by design - https://github.com/kelaberetiv/TagUI#
enterprise-security-by-design

6.11 Does TagUI track what I automate?

No. TagUI does not send outgoing web traffic or outgoing data, other than what the user is automating on, for example
visiting a website.

6.8. How do I kill any unfinished TagUI processes? 45

https://www.ostechnix.com/a-beginners-guide-to-cron-jobs/
https://github.com/kelaberetiv/TagUI
https://github.com/RaiMan/SikuliX1
https://github.com/casperjs/casperjs
https://github.com/ariya/phantomjs
https://github.com/laurentj/slimerjs
https://github.com/python/cpython
https://github.com/wch/r-source
https://github.com/php/php-src
https://github.com/kelaberetiv/TagUI#enterprise-security-by-design
https://github.com/kelaberetiv/TagUI#enterprise-security-by-design

TagUI, Release 6.110.0

6.12 Why doesn’t my visual automation work?

On macOS, it may be due to how the image was captured.

On Linux, you may need to set up OpenCV and Tesseract.

Download TagUI v6.110 here.

46 Chapter 6. Frequently Asked Questions

https://github.com/kelaberetiv/TagUI/issues/240#issuecomment-863112988
https://sikulix-2014.readthedocs.io/en/latest/newslinux.html#version-1-1-4-special-for-linux-people

	Installation
	Main concepts
	Advanced concepts
	Reference
	Tools
	Frequently Asked Questions

